24 Kasım 2019 Pazar

Evrimsel Süreç - 1: Evrim Tarihi'nin Büyük Zaman Çizelgesi (1. Kısım)

Evrimsel Süreç - 1: Evrim Tarihi'nin Büyük Zaman Çizelgesi (1. Kısım)

Bu yazı dizimiz, belki de Evrimsel Biyoloji'nin bilim camiasındaki görkemli egemenliğini ve bilime karşı dogmalara yönelik artık tartışılmayacak kadar net olan zaferini bilimsel bir dille, herkesin anlayabileceği şekilde aktaracağımız bir yazı dizisi olacaktır. Bu sayede belki de Evrim Ağacı olarak yazı dizilerimizin doruğuna çıkacak, sizi de beraberimizde bu ihtişamlı dağın tepesine tırmandırarak tüm evrim tarihinin, evrimsel sürecin her an elinizin altında olmasını ve net bir şekilde görebilmenizi sağlayacağız. Sizi evrim tarihinin derinliklerine götürürken, aynı zamanda birçok önemli bilgiyi sizlere aktaracak, bu sayede hayata dair bilimsel görüşünüzün çok daha sağlam temellere oturtulmasını sağlayacağız. Aynı zamanda size kademeli evrimsel süreci aktararak, Evrimsel Biyoloji'nin açıklayıcı gücünü göstermeye çalışacağız.
Abiyogenez yazı dizimizde tek hücreli en ilkin canlıların cansız varlıklardan nasıl evrimleşebileceklerini detaylıca anlatmıştık. Bu kapsamlı evrim tarihi makalesiyle başlayan "Evrimsel Süreç" yazı dizimizde ise canlılığın ilkin başlangıcından sonra geçtiği basamakları detaylı bir şekilde ele alacağız, önemli grupların ayrım noktalarını inceleyeceğiz, sayısız fosile bakarak evrimin izlerini göreceğiz. Kısaca, bu yazımızdan itibaren, büyük oranda fosiller ve genetik analizler üzerinden giderek canlılık tarihindeki önemli dönemeçlere göz atmaya başlayacağız. Ele alacağımız önemli dönüm noktaları arasında tek hücrelilikten çok hücreliliğe evrimden tutun da, denizlerden karalara çıkış, sürüngenlerin dinozorlara evrimi ve daha nicesini saymamız mümkündür. Bu süreçte, dönemeçlerin neden önemli olduğuna değinecek, evrimsel süreçte bu dönemeçlerin ("köşebaşı taşlarının") var olmasının sebeplerini derinlemesine analiz etmeye ve herkesin anlayacağı bir dilde sunmaya çalışacağız. Kısaca, canlılığın başlangıcından beridir sürmekte olan ve şimdiye kadar 3.8 milyar yılın geride bırakıldığı upuzun zaman dilimine mümkün olduğunca detaylı bir göz atacağız. Umuyoruz ki yazılarımızın bu kısmı tüm okurlarımıza faydalı olacaktır.


Bu dizimizin ilk yazısı olarak bu makalemizde ise size hiçbir ön bilgi vermeden, sadece bir zaman çizelgesi vereceğiz. Bu çizelge, evrimsel sürece genel olarak baktığımızda ne gibi köşe taşları gördüğümüzü, Dünya üzerindeki canlılığın 3.8 milyar yıl öncesinden bugüne kadar ne gibi süreçler ve önemli basamaklardan geçerek bugünlere geldiğini aktarmaya çalışacağız. Bu yazımızın faydalı olacağını düşünüyoruz, çünkü eli altında bu makalemizi bulunduran bir şahıs, kolaylıkla Evrim Tarihi'ne hakim olabilecek, önemli detayları gözden kaçırmayacak ve gerektiğinde, başı sıkıştığında kolaylıkla akıl almaz derecedeki büyük zaman dilimlerinde yolculuğa çıkabilecektir.
Yazımızı mümkün olduğunca sade, bir o kadar da detaylı hazırlamaya çalışacağız. Bundan kastımız şudur: Evrim tarihinin "kısa bir özeti"ni vermek çok güç, çünkü bahsettiğimiz süreler, öyle elle tutulur zaman birimleri değil: milyon yıllar, milyar yıllardan bahsediyoruz. Ancak yine de olabildiğince zaman çizelgemiz açısından birincil olmayan bilgilerden arındırmaya çalışacağız. Öte yandan, gereken bütün bilgileri de vermeye çalışacağız; bu sayede hiçbir önemli noktanın atlanmamasını hedefleyeceğiz.


Bazı Giriş Tanımları ve Terimler 

Başlamadan önce, tarihlerin belirtilmesinde kullanacağımız kısaltmaları belirtelim:
SI (Uluslararası standartlar) birim sisteminin dikte ettiği üzere "." ile ayrılmış sayılar binlik basamakları göstermektedir. "," ile ayrılmış sayılar ise ondalıklı sayılara denk gelmektedir. Yani "bin" sayısı "1.000" şeklinde yazılmaktadır. "Üç buçuk" sayısı "3,5" şeklinde yazılmaktadır. "Bin yirmi beş buçuk" sayısı ise "1.025,5" şeklinde yazılmaktadır.
Ayrıca kısaltmalara bakacak olursak, "milyon yıl önce" kalıbı yerine MYÖ kısaltması kullanılacaktır. Yabancı kaynaklarda bunun yerine "megaannum" (mega yıl, milyon yıl) anlamına gelen Ma kısaltması kullanılabilmektedir. Ayrıca yabancı kaynaklar "bin yıl" kavramı için Ka (kiloannum) kısaltmasını kullanmaktadırlar; ancak biz bunu kullanmayacağız.
Ne yazık ki Türkçe jeolojik çağların isimlendirilmesi açısından son derece sınırlı olduğu için, jeolojik evreleri İngilizce olarak yazacağız. İngilizcedeki "supereon", "eon", "era", "period", "epoch", "age" kelimelerine karşılık Türkçede sadece "zaman", "dönem", "çağ" ve "periyot" bulunduğu için ve bunların sınırları terminolojik olarak belirlenmediği için, birbirlerinden ayırmak zor olabilmektedir. Burada bilinmesi gereken, en üst düzey jeolojik zaman aralığının "supereon" olduğu, ondan sonra ise sırasıyla "eon", "era", "period", "epoch" ve "age" terminolojilerinin geldiğidir.
Son olarak, zaman dilimlerinin büyüklüğünün anlaşılmasını hedeflediğimiz için, dikkatten kolayca kaçabilecek "milyar" kelimesi yerine "bin milyon" kalıbını kullanacağız. Yani "4 milyar" sayısını "4 bin milyon" şeklinde belirtecek, "4.000 milyon" şeklinde yazacağız. Bu yüzden sizden istediğimiz, yazıya başlamadan önce sadece "yüz bin yıl" gibi göreceli olarak küçük bir zaman diliminin ne kadar devasa olduğunu düşünmeniz, sonrasında ise önce "milyon yıl", sonra "on milyon yıl", sonra da "milyar yıl" gibi kavramların ne anlama geldiğini irdelemeye çalışmanızdır. Lütfen 1.000 yılın bile ne kadar uzun olduğunu tam olarak idrak etmeden ve bu zaman dilimine neler sığabileceği üzerinde en azından 5-10 saniye boyunca düşünmeden bu yazıyı okumaya devam etmeyiniz. Çünkü bahsedeceğimiz zaman dilimlerinin büyüklüğünü anlamadan, evrimi anlamanız imkansız olacaktır. Dolayısıyla bu noktada bir dakikalığına durun, ömrünüzdeki yıl sayısını, bir asırda olan siyasi, ekonomik, ekolojik, vb. olayları, son milenyum içerisinde olan olayı bir düşünün. Sonrasında 1 milyon yılın, 10 milyon yılın, 100 milyon yılın ne demek olduğu üzerine biraz kafa yorun. En sonundaysa, 1 milyon yılın evrim için "göz kırpma süresi" kadar olduğu gerçeği üzerinde düşünün. Tüm bu devasa zaman dilimleri karşısında kalbiniz üzerinde bir ağrı, bir sıkışma hissettiğiniz anda bu yazıyı okumaya devam edin. Ancak bu noktadan sonra gerekli verimi alabileceğinize inanıyoruz.
Umarız ki tüm okurlarımıza faydalı bir çalışma olacaktır. Daha fazla sözü uzatmadan zamanın büyüleyici derinliklerine hep birlikte dalalım:

Evrim Tarihi'nin Büyük Zaman Çizelgesi

Hadean Eon: 4.600-3.850 MYÖ

4.600 MYÖ: Dünya gezegenini oluşturacak toz kütleleri Güneş etrafında dönen "birikim diski" adı verilen yapıyı oluşturmuştur. Günümüzden 4.6 milyar yıl öncesindeyiz. Açık halde yazacak olursak, 4.600.000.000 yıl öncesinde. Bu zaman dilimine, bu makalenin potansiyel okurlarının ortalama ömürlerinden (~80 yıl) tam 57.500.000 (57 buçuk milyon) tane sığmaktadır. Birçoğumuzun dedemizin babasını, yani 2 nesil öncesini tanımadığımız düşünülürse, 57.5 milyon neslin ne demek olduğu anlaşılacaktır. Üstelik aslında nesil ömre göre değil, üreme çağına göre hesaplanır. Dolayısıyla, insanın ortalama üreme yaşını 20 alacak olursak, eğer ki insanoğlu son 300.000 yıldır değil de 4.6 milyar yıldır var olsaydı, toplamda 230.000.000 (230 milyon) nesil geçerdi. Hatırlayamayacağınız kadar uzun olabilen 2 nesle karşılık, 230 milyon nesil... Tüm bu girizgahı, ne kadar devasa bir zaman diliminden bahsettiğimizi özenle vurgulamak için vermek istedik. İşte bu noktada, gezegenimizin oluşmaya başladığını görmekteyiz. Devam edelim:
4.570 - 4.567,17 MYÖ: Verilen bu zaman aralığında, Dünya'nın gaz ve toz bulutu halden, katı bir hale geçerek gezegenleşmesi yaklaşık 3 milyon yıllık bir zaman almıştır. Bu süre zarfında fizik yasaları etkisi altında bir merkez etrafında dönen toz parçaları giderek birbirlerine "kaynamış", önce büyük taşlar ve kayalar, sonra devasa kaya kütleleri, en son olarak bunların kaynaşması sonucu ise gezegenimiz Dünya oluşmuştur. Bu süreçte ve sonrasında Dünya'nın sıcaklığı aşırı derecede yüksektir.


4.533 MYÖ: Muhtemelen Dünya'ya çarparak Dünya içerisine kaynayan Theia gezegeni sebebiyle Dünya'dan dev bir parça koparak Ay'ı oluşturmuştur. Bu oluşum da tek seferde olmamış, tıpkı Dünya'nın oluşumu gibi öncelikle Dünya'dan kopan parçalar bir araya gelerek dev kütleleri oluşturmuş, bunların bir araya gelmesiyle de bir gezegen uydusu olan Ay oluşmuştur. Ay'ın oluşumu sayesinde Dünya'nın merkezi dönmesi belli bir düzene kavuşmuştur. Bu durumun, Dünya üzerinde canlılığın başlamasında önemli rol oynadığı düşünülmektedir. Ay'ın tam olarak nasıl oluştuğu bilinmiyor olsa da, bu ön-gezegen çarpışması en muhtemel olasılıklardan biri olarak karşımıza çıkmaktadır.
4.404 MYÖ: Dünya üzerinde oluştuğu tespit edilen ilk mineral olan Zircon'un oluştuğu zaman.

Zirkon...
Zirkon...

4.100 MYÖ: Dünya'nın yüzeyi katı bir taban oluşturacak kadar soğumuştur. Bu süreçte atmosfer ve okyanusların oluşumu başlamıştır. Miller-Urey Deneyi ve modern versiyonlarında gösterildiği üzere poliaromatik hidrokarbonların birikimi başlamıştır. Bunun haricinde derin okyanus plakalarında demir sülfidin sentezi sonucunda RNA'nın ilk oluşumu için gerekli tüm ortamlar sağlanmıştır ve daha önceki yazılarımızda açıkladığımız üzere öncelikle ribozim benzeri bir yapı oluşmuş, sonrasında günümüzde bildiğimize benzer bir RNA oluşumu gerçekleşmiştir.
4.030 MYÖ: Dünya üzerinde oluştuğu bilinen ilk kayanın oluşumu.
4.500 - 3.500 MYÖ: Cansız maddelerin fizik ve kimya yasalarının etkisi altında sürekli deneme-yanılma ve eleme-seçilim mekanizmaları sonucunda canlılığın ilk adımı olarak görülen koaservatların 4.500 milyon yıl kadar önce oluşmaya başladığı düşünülmektedir. Ancak bu koaservatların sabit bir yapıya kavuşmaları 400 milyon yıl kadar almış ve günümüzden 4,1 milyar yıl öncesine denk düşmüştür. Bununla da kalmamış, koaservatların evrimi prokaryotların ortaya çıkmasına sebep olmuştur. Bu sürecin 3.9-3.8 milyar yıl kadar öncesine gittiği düşünülmektedir. Fakat yine başarılı ve dengeli prokaryotik hücrelerin evrimi için 300 milyon yıl kadar bir süre gerekmiştir. Bu da, günümüzden 3,5 milyar yıl öncesine denk düşer. İlk canlının ne zaman evrimleştiği kesin olarak bilinemese de, elimizdeki zaman aralıkları burada verdiğimiz zaman dilimlerine işaret etmektedir. Muhtemelen ilk canlı 3.9 milyar yıl kadar önce cansızlıktan evrimleşmiş; ancak yeterli bir popülasyona erişilmesi 3.6-3.5 milyar yıl önce mümkün olabilmiştir. Konunun detayları Abiyogenez yazı dizimizde verilmiştir.

Koaservat benzeri yapılanmalar...
Koaservat benzeri yapılanmalar...

3.900 MYÖ: Dünya üzerine düşen meteorların sayısının en yüksek değere ulaştığı Geç Bombardıman Dönemi'dir. Bu bombardımanlar canlılığın oluşumunu oldukça ötelemiş, sadece deniz diblerindeki göreceli olarak güvenli volkanik bacalarda bulunan koaservatlar ve ilkin prokaryotik yapılar hayatta kalabilmişlerdir. Bir diğer görüşe göre ise bu dönemde canlılık Dünya'ya uzaydan gelmiştir. Yani bir başka gezegende başlayan hayat, meteorlarla prokaryotik yapılar olarak Dünya'ya taşınmış ve burada yayılmıştır. Bunlardan Dünya üzerinde başlangıç şimdilik daha muhtemel gözükmektedir.

Archean Eon: 3.800-2.800 MYÖ

3.800 MYÖ: Bildiğimiz anlamıyla en eski prokaryot ataların evrimleştiği dönem. Bu dönemdeki tüm canlılar tek hücreli, prokaryotik ve kemo-ototrof canlılardı. Yani hepsi Dünya üzerinde o dönemde bolca bulunan Karbondioksit gazını karbon kaynağı olarak tüketiyor ve bünyeleri içerisinde inorganik materyallerle oksitleyerek kimyasal enerjiye dönüştürüyorlardı. Bilinen en eski mikrofosiller bu döneme aittir. Yani bu tarihe ulaştığımızda, artık gezegen üzerinde canlılık bulunduğundan eminiz.
3.600 - 3.500 MYÖ: Günümüzdeki bütün canlıların yaşamış olan son evrensel atasının yaşadığı dönem. Bu canlıya evrimsel biyolojide son ortak ata veya evrensel ortak ata adını veriyoruz. Türkçede tam bir ayrım olmasa da, İngilizcede günümüzde an itibariyle var olan tüm canlıların ortak atası anlamında cenancestor terimi kullanılmaktadır. Bu, evrensel ortak atadan farklı olarak düşünülebilir. Çünkü evrensel ortak ata, yok olmuş tüm canlıların da ortak atasıdır, ilk canlıdır (koaservatlardan şu anda net olarak bilmediğimiz bir tanesi). Ancak bu evrensel ortak atadan dallanan kollardan sadece bazıları günümüzdeki çeşitliliğe doğru evrimleşmiş, diğerleri yok olmuştur. İşte günümüzdeki çeşitliliğe evrimleşecek olan son ortak ataya "senansestör" adı verilir. Bu ortak ata, 3.5 milyar yıl kadar önce yaşamıştır. Burada "son" denmesinin sebebi, günümüzden geriye doğru gittiğimizde ulaştığımız son ata olmasındandır. Normalde, zamanda ileriye doğru giderken karşılaşılan "ilk" ortak atadır. Bilinmesi gereken, bu canlının popülasyonunun dört bir yönde evrimleşmesi sonucunda ve tabii ki sonrasında gelen sayısız dallanma sebebiyle günümüze kadar var olmuş, var olan ve var olacak tüm canlıların evrimleşebilmiş olmasıdır. Bu dönemde ayrıca prokaryotik canlılar glikoliz denen bir tepkimeyi evrimleştirerek eski döneme göre daha verimli bir enerji üretme yöntemi geliştirirler. Bu dönemde zorunlu olarak oksijensiz sürdürülen metabolizma içerisindeki glikoliz, az miktarda; ancak eskisine göre daha kararlı ve bol miktarda enerji üretimini sağlamıştır. Bu yöntemde, o döneme kadar çevrede bolca üretilmiş glikoz hücre içerisinde kullanılmaya başlanmıştır. Ayrıca bu dönemde prokaryotlar içerisinde büyük bir türleşme meydana gelmiş ve bakteriler ile arkeler birbirinden ayrılmıştır. Son olarak, bu dönemde fotosentezin en ilkin versiyonları evrimleşmiştir. Bu tip fotosentezde oksijen üretilememektedir. Fotosentez yapan canlılar proton akışını kullanarak besin üretebilmektedirler; ancak bu işlem sonucunda henüz oksijen üretilememektedir.
3.200 MYÖ: İlk stromatolitlerin oluştuğu dönemdir. Stromatolitler, katmanlar halinde siyanobakterilerin yığılması sonucu oluşan kayalık benzeri yapılardır. Bugün bilinen en eski makrofosiller bu döneme aittir. Aşağıda en eski stromatolitlere ait fosiller gösterilmektedir.

Stromatolit örneği...
Stromatolit örneği...

3.000 MYÖ: Bildiğimiz anlamıyla fotosentez yapabilen ilk siyanobakterilerin evrimi bu dönemde gerçekleşmiştir. Bu canlılar, atalarından aldıkları fotosentetik özelliği bir adım öteye götürerek bünyelerinde bulunan su moleküllerini kimyasal bir araç olarak kullanabilmeyi başarmışlardır. Bu sayede ilk defa oksijen üretilmeye başlanmıştır. Bu oksijen okyanuslardaki çözünmüş demiri oksitleyerek ilk demir madeninin oluşmasını başlatmıştır. Fotosentez sebebiyle atmosferdeki oksijen düzeylerinde yavaş yavaş artış gözlenmeye başlanmıştır. O dönemde yaşayan ve oksijenin yakıcı etkisine adapte olmayan bakteriler için oksijen bir zehir etkisi yaratmış ve neredeyse tamamının ölümüne ve yok olmalarına sebep olmuştur. Bu dönemde Ay halen Dünya'ya çok yakındır ve bu sebeple 300 metreye varan gel-gitler oluşmaktadır. Dünya'daki atmosferik koşullar halen ciddi derecede kaotiktir ve sürekli fırtınalar yaşanmaktadır. Bu karmaşık etkiler, evrimsel sürecin hızlanmasına sebep olmaktadır.

Proterozoic Eon: 2.500-542 MYÖ

2.500 MYÖ: Büyük Oksitlenme Olayı olarak jeoloji tarihine geçen olay, siyanobakterilerin sayısının aşırı artmasıyla bu dönemde başlamıştır. Bantlı demir oluşumları bu dönemde meydana gelmiştir. Aşağıdaki grafikte, oksijen seviyelerinin bu dönemdeki artışı gösterilmektedir.


2.050 MYÖ: Atmosferin ilk defa oksijen yoğunluklu bir hal aldığı dönemdir. Dünya bu zamanda ciddi göktaşı çarpmalarına maruz kalmıştır (Vredefort ve Sudbury bölgelerinde görülen çarpmalar). 
2.000 MYÖ: Akritark adı verilen çok önemli bir fosil grubunun oluştuğu ve ciddi miktarda yaygınlaştığı bir dönemdir. Akritarklar genellikle asit içerisinde çözünmeyen, her türlü küçük yapılı organik yapıya verilen genel isimdir. Örneğin yeşil alglerin oluşturdukları kist yapılarının fosilleri, yumurta kabuğu fosilleri ve benzerleri bu fosil kategorisine girer. Bu fosiller, canlıların evrimsel geçmişleri hakkında çok önemli bilgiler vermektedir.
1.850 MYÖ: Prokaryotik canlılardan ilk defa ökaryotik tek hücreli canlılar evrimleşmiştir. Ökaryotlar, zar yapılı organellere sahip, çekirdek zarı bulunan, prokaryotlara göre daha gelişkin yapıdaki hücrelerdir. Bu hücrelerin, iki prokaryottan birinin diğerini endositoz yoluyla "yemesi ancak sindirememesi" sonucu evrimleştiği düşünülmektedir. Daha fazla bilgi için Endosimbiyotik Teori ile ilgili yazımıza göz atabilirsiniz. Aşağıda, bu döneme ait ökaryotik canlı fosilleri gösterilmektedir.

İlk ökaryotlara dair bazı iz fosilleri...
İlk ökaryotlara dair bazı iz fosilleri...

1.800 MYÖ: Ökaryotik canlıların ilk büyük alemi olan protistalar evrimleşmiştir. Protistalar hem hayvanların, hem bitkilerin evriminde önemli bir köşetaşı rolü oynayacaktır.
1.400 MYÖ: Denizler ciddi şekilde fotosentetik canlılar tarafından işgal edilmiştir. Stromatolitlerin çeşidi ve sayısı akıl almaz derecede artmıştır. Yeşil algler tüm denizlere yayılmışlardır. Tüm bunlar, Dünya'daki toplam oksijen üretimini binlerce kat arttıran unsurlardır.
1.200 MYÖ: Amitoz Bölünme ile Mitoz Bölünme'nin tam olarak ne zaman ayrıştığı saptanamamıştır; ancak Mayoz Bölünme'nin, yani Eşeyli Üreme'nin ilk defa bu dönemde evrimleştiği bilinmektedir. Bu da evrimin hızını katlayarak arttıracaktır. Aynı zamanda bu dönemde ilk çok hücreli organizmalar evrimleşmeye başlamıştır. Buradan da görüleceği üzere çok hücreli canlıların evrimini Kambriyen Patlaması'na sığdırmaya çalışmak bilimsel bir hata olacaktır. Elbette, bu dönemde oluşan çok hücreliler karmaşıklık bakımından oldukça kısıtlıdır ve bu dönemde ilk defa çok hücreli kırmızı algler evrimleşmiştir. Ayrıca bu dönemde, kıta kayması sonucunda Rodinia adı verilen bir süper-kıta oluşmuştur. Bu, bilinen en eski süperkıtadır. Süper-kıta, Dünya yüzeyi üzerinde, okyanus seviyesinin üzerinde olan tek bir dev kıta kütlesi demektir. Bu kıta haricinde ciddi bir büyüklüğe sahip hiçbir kara parçası bulunmaz.

ARKELER ARCHAEA

U

Açıklama ve Genel Bilgi

Arkeler, tek hücreli organizmalardan oluşan bir gruptur. Bu mikrobik canlılar, prokaryotturlar; dolayısıyla hücre zarları bulunmaz. Arkelerin ilk başta bakteri oldukları sanılmıştır, dolayısıyla arkebakteri denmiştir; ancak sonradan yapılan DNA analizleri, ayrı bir grup olduklarını ortaya çıkarmıştır. Arkeler ve Bakteriler genellikle benzer görünümde olsalar da, Haloquadratum walsbyi gibi yassı ve kare olan sıradışı arkeler de tespit edilmiştir. Bu morfolojik benzerliğe rağmen Arkeler'in önemli birçok geni ve metabolik yolağı, özellikle de transkripsiyon ve translasyon enzimleri bakterilerden çok ökaryotlara benzerdir. Bu nedenle arkeler ökaryotlara, bakterilere nazaran daha yakın bir gruptur. Bu yakın akrabalık bir yana, arkelerin biyokimyasının eşsiz olduğu bazı noktalar da bulunur: hücre zarlarında arkaeol gibi eter yağları kullanırlar, ökaryotlara göre daha fazla enerji kaynağına sahiptirler; bugüne kadar keşfedilen hiçbir türü sporla çoğalmaz.

Evrimsel Tarih

Prokaryotik canlılara ait fosil izler günümüzden 3.5 milyar yıl öncesine kadar gitse de, birçok prokaryotun fosilleşebilecek hücresel yapısı bulunmadığı için filogenetik tarihlendirme fosiller yerine, genler yoluyla yapılır. Yapılan çalışmalar, arkelerin atalarının günümüzden 3.8 milyar yıl öncesine kadar gidiyor olabileceğini göstermektedir.

Ekolojik Dağılım ve Habitat

Arkeler, dünya üzerindeki en geniş yaşam alanlarından birisine sahiptir. İlk keşfedilen arkelerin birçoğu ekstrem koşullarda yaşamaktadır (bunlara ekstremofil denmektedir): Kimisi gayzerler, okyanus bacaları veya petrol kuyuları gibi sıcaklığın 100 santigrat derecenin üzerine çıktığı yerlerde yaşamaktadır. Bazı diğerleri aşırı tuzlu, aşırı asidik, aşırı alkali sularda yaşamaktadır. Buna rağmen arkelerin büyük çoğunluğu mezofil olarak bilinir; yani ortalama koşullarda yaşarlar (bataklıklar, kanalizasyon, okyanuslar, hayvanların sindirim kanalı, toprak, vb.).

Diyet ve Metabolizma

Arkelerin metabolizması oldukça çeşitlidir. Bazı arkeler enerjilerini sülfür veya amonyak gibi inorganik maddelerden alırlar (bunlara litotrof denir). Bazı diğer arkeler enerjilerini güneş ışığından alırlar (bunlara fototrof denir); ancak bunların hiçbirinde oksijen üreten fotosentez olayı yaşanmaz. Metanojen adı verilen bazı arkeler, metan kullanarak oksijensiz ortamda enerji üretebilirler. Bazı diğer arkelerin atmosferdeki karbondioksiti kullanmaktadır (bunlara ototrof denir).

İnsanlarla Etkileşim

Ekstremofil arkelerin enzimleri, bu aşırı koşullarda yaşamanın anahtarıdır. Bu enzimlerin sentetik olarak üretilmesi, yüksek sıcaklık gerektiren besin işlemleri için kullanılabilmektedir. Ayrıca arkelerin bazı enzimleri, yeşil kimya adı verilen, çevre dostu kimya uygulamaları için ilham kaynağı olmaktadır.

Etimoloji

Arkelerin bilimsel ismi olan Archaea, Yunancada "antik" anlamına gelen ἀρχαῖα (arkhaîa) sözcüğünden türetilmiştir.

U
ARKELER
1970'lerde yapılan çalışmalarda arkeler farklı bir yaşam biçimine sahip canlılar olarak kabul edilmişti.
1990'larda yapılan çalışmalarla sistematik üzerine çalışan bilim insanları bu canlıları bakterilerden ayırmayı önermişlerdir. Bu ayrımı arkelerin hücresel, metabolik ve filogenetik özellikleri ile gen yapılarına bakarak yapmışlardır.
Günümüzde arkeler ile ilgili olarak yapılan çalışmaların çoğu bu canlıların sistematik özellikleri ile ilgili değil, ekolojik özellikleri ile ilgilidir. Prokaryot hücreli canlılar olan arkeler yaşadıkları zorlayıcı şartlar nedeniyle ilgi odağı olmuştur.
Arkeler, kaynayan jeotermal kaynaklardan, yanardağ bacalarının etrafına, derin deniz termal çukurlarından, tuz göllerine, yüksek asit ve yüksek bazik özelliğe sahip sular ve topraklara kadar son derece zorlayıcı şartlarda (aşırı tuzluluk, yüksek sıcaklık, düşük pH vb.) yaşayabilen canlılardır.

Yakın zamana kadar arkelerin sadece diğer canlıların bulunmadığı şartlarda yaşayabildikleri düşünülmesine rağmen günümüzde ılımlı koşullarda (ortalama tuzluluk, sıcaklık ve pH vb.) başka gruplar ile birlikte de yaşayabildikleri saptanmıştır.
Zorlayıcı şartlara uyum sağlamış bu canlıları yaşadıkları çevresel koşullara bağlı olarak dört grupta inceleyebiliriz.


Metanojenik arkeler (metanojenler): CO2'i hidrojen ile birleştirip metan (CH4) gazı oluşturarak enerji elde ederler. Zorunlu anaerob olan bu gruba oksijen zehir etkisi yapar. Bataklıklarda, kirli sularda, çiftlik gübresinde, çöplerde ve otçul canlıların sindirim sistemlerinde bol miktarda bulunur.
Buralarda çürümekte olan artık maddelerde beslenirler.

Bazıları karbon dioksit ve hidrojen kemosentez yoluyla besin üretir. Metanojenlerin bazı türleri otçul canlıların sindirim sisteminde yaşarlar ve selülozun parçalanmasında etkilidirler. Bazı türlerinin volkanik bölgelerde 110 derecede yaşadıkları görülmüş ve 84 derecenin altında yaşayamadıkları tespit edilmiştir.
Aşırı tuzcullar (halofiller): Bu grupta yer alan arkebakteriler, çok tuzlu ortamda yaşayabilirler. Tuz gölü ve Kızıldeniz gibi tuzlu yerlerde yaşar. Tuzluluk derecesi %36 olan ortamlarda rahatça yaşadıkları tespit edilmiştir. Bazı türler gelişebilmek için deniz suyundan on kat fazla tuz oranına ihtiyaç duyar. Klorofilleri bulunduğu için fotosentez yaparlar.

Aşırı termofiller: Sıcak ortamlarda yaşar. Bu canlılar için en uygun sıcaklıklar 65-85 °C arasında değişmekle birlikte bazı türler 105 °C ve daha yüksek sıcaklıklardaki yanardağ bacalarının etrafında ve derin deniz termal çukurlarında da gelişme gösterebilir.

Soğuk seven (psikrofilik arke): Bu grubun üyelerinin %80'inden fazlası sıcaklığı 5 °C'un altındaki alanlarda yaşar. Soğuk seven arke türleri neredeyse suyun donma noktasındaki zorlayıcı yaşam şartlarına direnç gösterir. Bu şartlarda yaşayabilmek için enzim aktivitesini, hücre zarı akışkanlığını, protein yapılarını, besin maddelerinin ve artık ürünlerin hücreye giriş çıkışını değiştirebilir. Soğuk seven arkelerin sahip oldukları bu özellikler sayesinde biyoteknolojik çalışmalardaki yerleri her geçen gün artmaktadır.

Arkelerin Gram boyanmaları, şekilleri, solunum ve beslenmeleri gibi fiziksel ve kimyasal özellikleri 
bakterilere benzer. Arkeler yukarıdaki gruplamanın dışında bu özellikleriyle de gruplandırılabilir.
Biyolojik ve ekonomik özellikleri açısından bakıldığında arkeler, özellikle ılıman şartlarda yaşayan bakterilerin yaşayamadığı koşullarda yaşayabilirler ve bozulmadan kalabilen dirençli enzimlere sahiptir. Bu enzimler, endüstride pek çok tepkimenin gerçekleşmesinde, atık metallerin zehirli özelliklerinin azaltılmasında, kalitesi düşük metal cevherlerinin biyolojik yollarla kullanılabilir hale getirilmesinde vb. kullanılmaktadır. Ayrıca metallerin bulaşması ile kirlenmiş suların yeniden kullanılabilir hale gelmesinde ve boya endüstrisinin anaerobik arıtma tanklarında bulunan atık suyun yeniden temizlenmesinde de arkelerden yararlanılmaya başlanmıştır. Çiftliklerde çöpler ve hayvan gübresi üzerinde gelişebilen metanojen arkeler ise biyogaz olarak adlandırdığımız metan gazını oluşturur. Ayrıca otçul canlıların bağırsaklarında selüloz sindiriminde etkilidir.

Prokaryotlardan Ökaryotların Evrimi ve Endosimbiyotik Kuram (2.7 Milyar - 900 Milyon Yıl Önce)

Evrimsel Süreç içerisinde ilerlemeyi sürdürdükçe, görüldüğü üzere her zaman daha basit canlılardan, daha karmaşık canlıların evrimleştiğini görürüz. Üstelik gerek fosil kayıtlarında, gerekse de moleküler kayıtlarda bu geçişler hatasız bir şekilde karşımıza çıkmaktadır. Şimdiye kadar asla aralarında doğrudan evrimsel bir ilişki bulunan iki canlıdan, karmaşık olanının basit olandan daha erken yaşadığına rastlanmamıştır. Gerçi kimi zaman karmaşık özelliklerin kademeli olarak yitirildiğini (gerekli olmadığı için köreldiğini) görmekteyiz; ancak yapıların tamamına genel olarak baktığımızda her zaman basitten karmaşığa bir evrim görürüz. Bu, Fizik ve Biyoloji yasaları ile sınırlandırılmış bir kuraldır. Zira enerjinin ani değişimi hem kaos oluşumuna daha fazla sebebiyet vereceği için, hem de bu kaos durumuna canlıların daha zor adapte olabileceği için değişim hep yavaş gerçekleşir. Bu, bir Biyoloji yasası olan evrimin Fizik tarafından nasıl domine edildiğini güzel bir şekilde göstermekte ve bu Evren içerisindeki Fizik yasaları bu şekilde kaldığı sürece Evrim yasasının her daim işleyeceğini bize hatırlatmaktadır.
Yazı dizimizin bu kısmında sizlere yine basit bir başlangıçtan, prokaryotlardan evrimleşerek ökaryotlar olarak bilinen ve çok geniş bir canlı grubunu kapsayan Alan'ı tanıtacağız ve bu Alan'ın evrimine göz atacağız.
Öncelikle Evrimsel Süreç'te daha önceden değindiğimiz prokaryotik canlılardan evrimleştiğini neredeyse kesin olarak bildiğimiz Ökaryotlar'ı, Bakteriler ve Arkeler'i içine alan Prokaryotlar'dan ayıran bazı temel noktalara göz atalım. Bu sayede Evrimsel Süreç içerisinde ne gibi bir değişim sonucunda bu canlı alanının evrimleştiğini daha kolay anlayabiliriz. Ökaryotları ayırt eden bazı özellikleri şöyle sıralayabiliriz:
  • Ökaryotların hücresel iskeletleri (cytoskeleton) bulunur. Prokaryotlarda bu yapıya rastlanmaz.
  • Ökaryotların hücre yüzeyi prokaryotlara göre daha esnektir.
  • Ökaryotların çekirdek yapısı bulunur (eu: gerçek/gelişmiş; pro: ilkin; karyon: çekirdek anlamına gelir) ve bu çekirdek yapısı içerisinde genetik materyal vardır. Ökaryotları ayırt etmenin en kolay yolu çekirdeğe bakmaktır.
  • Ökaryotlarda sindirim kofulları bulunur.
  • Belki de hepsinden önemlisi, ökaryotlarda zarlı organeller bulunur. Bu zarlı organelleri şöyle sıralayabiliriz: endoplazmik retikulum, sarkoplazmik retikulum, Golgi cisimciği, lizozom, mitokondri, çekirdek, peroksizom, koful, sitoplazmik granüller, hücre kesecikleri (fagozomlar, otofagozomlar, klatrin kaplı keseler), salgı keseleri (sinaptozomlar, akrozomlar, melanozomlar, kromafin granülleri). Bu organellerin hiçbirine Prokaryotlar'da rastlanmaz.
Peki, bu özelliklere sahip canlı grupları hangileridir? Alan düzeyinden Alem/Krallık (Kingdom) düzeyine inersek, ökaryotik canlıların şunlar olduğunu görürüz: Protistalar, Mantarlar (Fungi), Bitkiler (Plantae) ve Hayvanlar (Animalia)
Bu canlılara ait tipik hücre yapılarına bakalım, ancak önce bir prokaryot hücresi görerek aradaki farkları tespit edelim:
Yukarıdaki E. coli bakterisinin elektron mikroskobu ile çekilmiş görüntüsü eğer ki aşağıdaki görüntülerle kıyaslanırsa, aradaki farklar net bir şekilde görülecektir. Zira yukarıdaki bakterinin organelleri olmakla birlikte, bu organeller zarla çevrili değildir ve sitoplazma (hücre içi sıvısı) içerisine dağılmış şekilde bulunur, zarla çevrili kompartmanlar değildir. Aşağıda ise bir ökaryotik canlı olan protista görüntüsü görmekteyiz:
Yukarıdaki protista örneğine bakacak olursanız, ortada iri bir şekilde görülen çekirdeği net olarak ayırt edebilirsiniz. Ayrıca yine dikkatli bakılırsa diğer zarlı organelleri de görmek mümkündür. Bunların hiçbirine prokaryotlarda rastlanmaz. Protistalar tek hücreli de olabilirler, çok hücreli de. Ancak Evrimsel Süreç açısından henüz çok hücreliliğe gelmedik. Bu noktada ökaryotların genel ataları evrimleşmektedir. Henüz bitki, hayvan, protista ayrımına rastlamayız.
Aşağıda da bir mantar zoospor hücresi görmekteyiz:
Yine bütün hücre organelleri net bir şekilde görülebilmektedir. Anlaşılacağı üzere zarlı organel kalıbından kasıt, kendine ait bir kompartman içerisinde bulunan yapılardır. Bu yapıların nasıl evrimleştiği bu yazımızın asıl konusu olacak. Ancak ilerlemeden bir de bitki ve hayvan hücresi görelim, aynı yapıların onlarda da bulunduğuna ikna olmak adına:
Yukarıdaki bir bitki hücresinin mikrografıdır. Zarlı organel yapıları açık bir şekilde görülmektedir. Aşağıda ise bir Arabidopsis thaliana türü bitkinin hücreleri daha da yakından bir mikroskop altında gözlenmiş ve organeller isimlendirilmiştir:
Hayvanlarda da durum benzerdir. Aşağıda hayvan hücrelerinde görülen tipik organeller işaretlenmiştir:
Bu arada tüm hücrelerin yapısının ne kadar birbirine benzediğini ve aralarında ne kadar ufak farklar olduğuna dikkatinizi çekeriz. Ancak bu hücrelerin üst üste, alt alta, yan yana yığılması sonucu oluşan canlılar arasında dağlar kadar fark vardır. Bu da basit bir başlangıçtan, Evrimsel Süreç doğrultusunda birikimli olarak ne kadar farklı yönlere gidilebileceğinin güzel bir göstergesidir.
Bunlara gelecek yazılarda değineceğiz; ancak şimdi biz genel olarak ökaryotlardan bahsedelim. 

Ökaryotlar Nasıl Evrimleşti? Cevap: Endosimbiyotik Teori

Ökaryotların evrimi uzun bir süre soru işareti olarak kalmıştı. Konuyu açıklamak üzere birçok hipotez ileri sürüldü. Ancak bunların hiçbiri doyurucu cevaplar veremiyordu ve bazı yönlerden çürüktü. Ta ki hücrelerimizin en önemli organellerinden biri olan mitokondri ile bitkiler için hayati önem taşıyan organel kloroplastların yapısı incelenene kadar... 
Rus botanikçi Konstantin Mereschkowski, kendisinden önceki bilim insanlarının kloroplastlar üzerindeki incelemelerinden yola çıkarak, kendi bulgularını da bu bilgilerin üzerine ekleyerek, 1905 yılında Endosimbiyotik Teori'nin temellerini atmıştır. Kendisinden önce, Andreas Schimper isimli bir diğer botanist, zaten kloroplastları incelemiş ve yapıları ile işlevlerinin serbest olarak yaşayan bir bakteri olan siyanobakterilere oldukça benzediğini fark etmişti. Hatta Schimper, makalesinde bir not olarak bitkilerin, iki farklı canlının ortak yaşama geçmesiyle evrimleşmiş olabileceğini bile ileri sürmüştü.
Daha sonra 1960'larda yapılan ve elektron mikroskobu ve genetik metotlarını kullanan bazı araştırmalar, kloroplastlar ile siyanobakteriler arasındaki bağlantıyı, mitokondriler ile de Rickettsiales isimli proteobakterilerin (ön bakteri, ilkel bakteri) arasındaki benzerliği ve genetik bütünlüğü ortaya çıkarmıştır.
Endosimbiyotik Teori'ye göre, milyonlarca yıl boyunca hüküm süren bakteriler, bir noktada kendilerinden küçük bazı diğer bakterileri veya proteobakterileri endositoz ile yemek üzere hücre içlerine almış; ancak sindirememişlerdir. Bu sindirimin gerçekleşmemesinden sonra, iki bakteri de eskisinden olduğundan daha avantajlı bir konuma geçmiştir: Çünkü büyük ve avcı olan bakteri, "yediği" ama sindiremediği bu bakterinin hücre içi bazı görevleri yerine getirmesini sağlayabilmiştir. Bunun karşılığında av olan küçük bakteri ise, bu yeni hücre içi konumunda, eskiden olduğundan çok daha güvendedir ve ihtiyacı olan materyallere çok daha kolay ulaşabilmektedir. Bu sebeple Doğal Seçilim bu ilişkiyi desteklemiştir ve bunun sonucunda ilk ökaryotik hücreler meydana gelmiştir.
Üstelik Endosimbiyotik Teori sadece bu organelleri açıklamakla da kalmaz. Daha sonraları, 1981 yılında Lynn Margulis isimli bir bilim insanı, spiroket tipi bakterilerin, diğer bakteriler üzerinde yaşamaya başlayarak onları sillerini ve flagellumlarını (kamçılarını) meydana getirebileceğini göstermiştir. Richard Dawkins de Ataların Hikayesi isimli kitabında bu konuya geniş yer vermektedir.
Benzer şekilde, peroksizom denen organellerin de endosimbiyotik ilişkiler sonucu evrimleşmiş olabileceği farklı bilim insanlarınca ileri sürülmüştür. Bu konudaki problem, kamçıların ve peroksizomun kendi genetik materyali olmamasıdır. Ancak transpozonal sıçramalar ve mutasyonlar işin içine katıldığında, bu yapıların zamanla genetik materyallerini kaybetmiş olabileceği fikri de doğmakta ve güçlü bir açıklama yapabilmektedir. Az sonra buna tekrar değineceğiz.
Şimdilik sadece mitokondri ve kloroplastları, yani Endosimbiyotik ilişkinin varlığından neredeyse kesin olarak emin olduğumuz organelleri ele alacağız.

Endosimbiyotik Teori'yi Destekleyen Bilimsel Gerçekler

  1. Mitokondri ve kloroplastlar günümüzde amitoz bölünme ile üretilmektedir. Bakteriler de bu yolla üremektedir.
  2. Ökaryotik hücrelerde organeller iki ya da daha fazla zar ile sarılıdır. Bu zar, peptidodoglikan içerikli zarı yapısına sahiptir. Dolayısıyla bu zarın, endosimbiyotik birleşmeden önce serbest halde bulunan bir bakteriye ait olabileceği düşünülmektedir; çünkü bakterilerin hücre duvarı da bu yapıdadır.
  3. Mitokondri ve kloroplastların kendilerine ait DNA'ları bulunmaktadır. Bu DNA, hücre çekirdeğindeki DNA'dan farklıdır. Bu DNA, tıpkı bakterilerdeki gibi plazmid şeklindedir; yani yuvarlak ve ve küçüktür.
  4. DNA üzerinde yapılan araştırmalar, hücre çekirdeğindeki ana DNA'da, mitokondri ve kloroplastlardan taşınarak gelmiş olabilecek genler bulunduğunu ortaya çıkarmıştır. Endosimbiyotik ilişki başladıktan sonra, organelleri oluşturacak olan bakteriler bazı genlerini çekirdekteki ana DNA'ya aktarmışlardır; çünkü hücreler birbirine bağımlı hale gelmiştir.
  5. Organellerde bulunan 70S tipi ribozomlar ile bakterilerde bulunan ribozomlar birbirinin aynıdır. 
  6. Organeller tarafından üretilen proteinler ile bakterilerin ürettiği proteinler başlangıç aminoasidi olarak aynı aminoasidir (N-formilmetiyonin) kullanır.
  7. Kloroplastlar içerisinde bulunan klorofillerin tilakoid yapısı ile siyanobakterilerin yapısı son derece benzerdir.
  8. Mitokondride üretilen bazı enzimler, bakterilerdekiyle çok benzerdir.
  9. Mitokondri ve kloroplastların boyutları, bir bakterininkine oldukça benzerdir.
Liste bu şekilde uzayıp gitmektedir. Ancak konuyu daha fazla uzatmamak adına, burada kesmek istedik. Çünkü Endosimbiyotik Teori, artık pek çok açıdan desteklenen, güçlü bir teoridir. Yıllar içerisinde bu teoriye de karşı birkaç tez sunulmuştur; ancak bunlar başarıyla izah edilebilmiştir. Örneğin bir grup bilim insanı, mitokondri ile kloroplastların hücre dışında tek başına hayatta kalamayacaklarını, bu sebeple de Endosimbiyotik Teori'nin doğruluğunun kuşkulu olduğunu söylemiştir. Ne var ki bunun açıklaması, organelleri ilişkiden sonra ana hücreye bağımlı hale gelmeleri ve genlerinin bir kısmını kaybetmeleridir. Elbette ki bu sebeple, organeller bağımsız yaşayamayacaktır. Bu gibi birkaç güçsüz karşı-tez de başarıyla izah edilebilmiştir.
Bunun haricinde ikincil, üçüncül ve hatta dördüncül endosimbiyoz'dan bahsetmek mümkündür. Bunlar da arka arkaya hücrelerin endosimbiyotik ilişkiye girmesinden ötürü doğar. Temeli, bazı organellerin 3 kat zarlarının olmasına dayanmaktadır. Bu, konumuzu aşacağı için burada fazla girmiyoruz.
Ökaryotların nasıl evrimleştiğini anladıysak, özellikleriyle devam edebiliriz:
Prokaryotların hücre yüzeyi genellikle esnek değildir ve eğilip bükülmeleri çoğu zaman zor olabilmektedir. En antik bakteri fosilleri bile çubuk şeklindedir ve büyük ihtimalle bugünküler gibi kısıtlı esnekliğe sahiptir. Ancak ökaryotlar, hücre duvarlarının bulundukları ortama uygun bir şekilde evrimleşmesi sonucu çok daha esnek bir yapıya kavuşmuşlardır. Bu sayede, prokaryotlar belli bir büyüklüğe kadar büyüyebilmekteyken (yüzey-alanı-hacim-oranı kısıtlamasından ötürü), ökaryotlar kendi üstlerine katlanarak yüzey alanını arttırabilir ve prokaryotlardan çok daha büyük hale gelebilirler, onlarca kattan binlerce kata kadar büyüyebilirler. Günümüzdeki en büyük ökaryotik hücreler, kuş yumurtalarıdır. Hepimiz tavuk yumurtasını biliriz. Bu, tek bir hücredir ve ökaryotiktir.
Ayrıca ökaryotlar, bazı prokaryotik hücrelerin özelliklerini de taşımaktadırlar. Yatay Gen Aktarımı'ından daha önce bahsetmiştik (bkz: Bakteriler yazısı ve ilgili Evrim Mekanizmaları yazımız). Bu olay sonucunda ilkel ökaryotlar da, prokaryotlardan genler alabilmişlerdir. Bu da, çok eskilerdeki ve özellikle de tek hücrelilerdeki evrimsel ilişkileri ortaya çıkarmamızı zorlaştırmaktadır.
Ökaryotlar, günümüzde çok büyük bir başarıya ulaşmışlardır. Her ne kadar Dünya'nın dört bir yanına dağımış ve sonsuz miktarda çeşitlenmiş olsalar da, her şeyin başlangıcının prokaryotlar olduğunu unutmamak gerekmektedir.
Biyologlar arasında şöyle bir söz dolaşır:
Bütün insanlar (ökaryotik hücrelere sahiptir)bir anda ortadan kalksa, Dünya'daki türlerin %99'u bunun farkına bile varmaz. Ancak bakterilerin tümü bir anda ortadan kaybolsa, bir hafta içerisinde Dünya üzerinde hiçbir canlı kalmaz.
Sonuç olarak prokaryotlardan başlayarak yaklaşık 2.7 milyar yıl önce Endosimbiyotik Kuram dahilinde karmaşıklaşmaya başlayan tek hücre yapıları kısa sürede gezegene egemen olabilmiştir. Bu ökaryotik canlıların evrimi çok uzun yıllar sürecek ve günümüze kadar gelecektir. Unutmamak gerekir ki 2.7 milyar yıl önce prokaryotlardan ayrılan ökaryotlar, geniş bir çeşitliliğe doğru dallanarak evrim geçireceklerdir. Bu evrim sonucunda öncelikle hücreler daha da karmaşıklaşacak, sonrasında gelecek yazımızda değineceğimiz noktada, günümüzden 900 milyon yıl kadar önce kolonileşme sonucu ilkin çok hücreliler oluşacaktır. Çok hücrelilerin evrimi ise günümüzdeki çeşitlilikte bir dönüm noktası olacaktır. İşte yazımızı tam bu noktada bırakıyoruz.